If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+100x+140=0
a = -16; b = 100; c = +140;
Δ = b2-4ac
Δ = 1002-4·(-16)·140
Δ = 18960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18960}=\sqrt{16*1185}=\sqrt{16}*\sqrt{1185}=4\sqrt{1185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-4\sqrt{1185}}{2*-16}=\frac{-100-4\sqrt{1185}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+4\sqrt{1185}}{2*-16}=\frac{-100+4\sqrt{1185}}{-32} $
| a+44=79 | | 7x+25(10.555556)=90 | | -4w12= | | 3.35=x-2.25 | | w+27=39 | | (x−5)^2−2=13 | | 6x-42=7x-49 | | (x−5)2−2=13 | | -4.2x-8.3=-3.7(x+3 | | m=17.53.5 | | 11m-6=-83 | | -10(g-6=65 | | -50=20+n | | -12=13+n | | (9x-5=7x+25)=180 | | 32=n-21 | | 87=j+49 | | -80=-55+n | | n+701=955 | | 3x+2(5x-3)=7+8x | | 9x-(5+2x)+(2+3x)+4=13x+10= | | 135=-3(-7-4a)+8 | | 15=40+n | | 3.3=0.08x | | x+2.3=4.4 | | 3x=16-4x | | y+4.21=7.6 | | -205=5(5x-1) | | 2x²-8x=24 | | -53=4k=7 | | -6w+3(w+3)=36 | | 3z^2+11-4=0 |